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Abstract: Aiming at the bottleneck of traditional association rule algorithm (Apriori), such as 
processing speed and computing resources, as well as the problem of accessing disk in the 
MapReduce computing framework on Hadoop platform. The traditional association rules are 
transferred to the memory based Spark computing framework, and the optimization algorithm under 
the framework of Spark is given. By comparing the Apriori algorithm under MapReduce, the 
algorithm can greatly improve the mining efficiency of the large data association rules. At the same 
time, the algorithm can reduce the I/O overhead when facing a large number of data. In the cluster, 
both the extensibility and the acceleration ratio are better than the traditional Apriori algorithm. 

1. Introduction 
With the advent of the era of big data, the explosive growth of data volume is becoming more 

and more concerned about the application of mining technology in large data environment. Apriori 
algorithm is the most classical algorithm in association rules. Its status is very important, but the 
algorithm's initial serial computing has been unable to meet the requirements of the data era. In 
today's parallel computing model, many scholars choose a new model of large data mining. 

In recent years, with the wide application and open source of Hadoop and Spark, the parallel 
computing framework of cloud computing is applied to distribute and parallelize traditional 
algorithms, so as to improve the efficiency of algorithm implementation. It has become the 
preferred research direction of many scholars. In this paper, the traditional Apriori algorithm is 
improved on the basis of the Spark framework, and the new improved algorithm can be applied to 
the spark distributed parallel computing framework. At the same time, Spark based computing 
kernel RDD is used to store data in a specific data structure, thereby reducing the number of 
scanned databases[1]. In addition, through the introduction of global pruning, a large number of 
redundant candidate sets are reduced and the efficiency of the algorithm is further improved. 

In view of the shortcomings of the traditional Apriori algorithm, the parallel computing 
framework based on spark enables the algorithm to deal with the big data effectively, and improves 
the efficiency of the traditional algorithm and reduces the I/O cost[2]. The remaining contents of 
this paper are as follows: the second part gives the spark related technologies, as well as the 
shortcomings of the traditional Apriori algorithm and the improvement strategy. The third part gives 
the implementation and theoretical proof process of the algorithm. The fourth, fifth part gives the 
operation and result analysis of the experiment, and makes a prospect for the future work. 

2. Research on Spark and Association Rules 
2.1 Spark Computing Framework 

Spark was born in UC Berkeley AMP lab, which is similar to the MapReduce computing 
framework in Hadoop, but its performance is better than MapReduce[3]. The Spark computing 
framework is based on memory, compared to the MapReduce results stored in the disk, and the 
middle result of the Spark task is stored in memory[4]. This allows the use of the results without the 
need to read and write HDFS repeatedly. Therefore, it can better use its performance to achieve the 
iterative algorithm in big data. Its characteristics are as follows[5-7]: 
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· efficient. The memory computing engine provides the Cache mechanism to support repeated 
iterations or multiple data sharing, and also reduces the IO overhead of data reading; The 
unique DAG (Directed Acyclic Graph) engine reduces the read and write overhead from 
multiple intermediate results to HDFS; multi line task pool boot, reduce unnecessary sort 
operation in shuffle process and reduce the disk IO operation. Therefore, the calculation 
speed is 10~100 times faster than that of MapReduce. 

· easy to use. Spark provides a wealth of API, supports Java, Scala, Python and R four 
languages, in addition, the operation on the Spark, the amount of code is less than 
MapReduce 2~5 times. 

· multipurpose. Since Spark is integrated with Hadoop, Spark can be used seamlessly with 
many tools on Hadoop, providing convenience for developers. 

The running process of Spark is shown in Figure 1. The whole process is composed of Spark 
Context, Cluster Manager, Work Node and Executor. Among them, Driver users write data 
processing logic; Cluster Manger is responsible for central deployment and resource management; 
Work Node is responsible for processing Driver commands and reporting status to Driver; Task is 
the computing unit, and Executor is the executor. The Spark program will create a Spark Context 
interactive interface, through the Cluster Manager resource scheduling, so that the computing node 
access to resources, and ultimately perform tasks in Executor. 

 
Figure.1. Spark Program Flow Chart 

2.2 Improved Apriori Algorithm Based on Spark  
Apriori algorithm uses a simple data structure, the execution process is clear, but when the 

transaction dimension is large and the minimum support is very small, the execution efficiency will 
decrease. Therefore, there are several problems in the traditional Apriori algorithm [8-10]: 

· A large number of candidate items will be generated by the algorithm, which directly results 
in a large amount of redundancy, which reduces the computational efficiency of the 
algorithm. 

· Repeatedly scanning transaction database, when generating high-dimensional itemsets, we 
need to scan the database repeatedly, resulting in too much I/O overhead, long computation 
cycle and low algorithm efficiency. 

· The time complexity is high, due to the frequent itemsets one candidate process needs to link 
and the pruning operation, the time complexity is very high, the efficiency of the algorithm is 
low. 

For second points, an improved strategy is to store a specific data structure to reduce the number 
of times the database is scanned. Therefore, according to the RDD calculated by the Spark 
framework, the data storage structure in the Apriori algorithm is transformed into the storage 
structure shown in Figure 2. 
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Figure 2. Data structure storage diagram 

In the data structure given by Figure 2, when the support degree of statistical candidate set is 
only needed, support is taken as Key value, then the array of corresponding subscript elements is 
used to do "join" operation. Finally, the number of non-zero statistics is the support of candidate set. 
The formula is (1): 
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In view of third points, the main changes are made as follows. 
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that is, 

1
1 1kL i k−  − = − 

.This is inconsistent with the hypothesis, so X is not a frequent k  

item set. 

3. The Theoretical Proof And Implementation Process Of The Algorithm 
3.1 Algorithm Theory Proof 

On this basis, combined with the Spark parallel computing framework, the algorithm is 
optimized. The algorithm has two main steps: 

A. produce local frequent itemsets. 
B. generate global frequent itemsets. 
In the improved algorithm, we first block the data. In order to ensure the correctness, we also 

define the local minimum support degree to the block. Suppose that the database 
i

D  is divided into 
m  blocks, i th−  is 

i
D  data block, and min_ sup  is a global minimum frequent itemset, and then 

the minimum frequent itemsets for i th−  block are: 
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The local minimum support is still min_ sup , that is to say, in the local dataset, when the local 
frequent itemsets are less than min_ sup , they are considered as global frequent itemsets and 
participate in the next stage of pruning operation. 

In addition, for database 
i

D , it is divided into m  blocks, and L  is a global frequent itemset, so It 
for any block of data in L  needs to be satisfied: 

sup( ) min_ sup
i i

It ≥
                       (5) 

It is proved as follows: 
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It can be seen from the proof that formula (5) is established, so we can launch a set of global 
frequent itemsets L , which can generate all the local frequent itemsets in m  block data, so it is 
feasible to generate global frequent itemsets through local frequent itemsets. 

3.2 The Execution Flow of The Optimization Algorithm on Spark 
First, transaction database is partitioned into blocks, each block is defined with minimum support 

degree, and then allocated to each computing node for local computation to generate local frequent 
itemsets. The generated local frequent itemsets are aggregated to the global candidate item sets, and 
then distributed to the statistical global support of each node, thus getting the global frequent 
itemsets. 

The running process is shown in Figure 3: 

 
Figure 3. Flow chart of algorithm implementation 
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4. Experimental Results And Analysit 
The hardware experiment platform selected in this paper is a number of models of the same 

computer. The operation system is CentOS 6.5, Spark version is 2.2.0, the processor is Intel I7 eight 
core processor, 8G runs memory, 1T hard disk. 

The data set used in the experimental data set is the data provided by the Fourth National 
University of cloud computing application innovation competition. The size of the data is 1.6G, and 
the average transaction length is 42M, with a total of 2000 Items. They are divided into three 
databases, 0.3G, 0.5G, and 0.7G, and then tested. 

This paper is mainly to achieve the optimization of association rules algorithm based on Spark, 
so in experiment, we measure the efficiency of the algorithm by comparing the efficiency of 
traditional MapReduce algorithm. In addition, in the same test environment, we test different data to 
prove the scalability and speedup of the algorithm. Finally, verify the scalability of the algorithm by 
testing the same data set with different nodes. 

4.1 Experiment A 
Under the same configuration of the experimental machine, the same data set is executed in the 

Spark computing framework and the MapReduce computing framework respectively. Then the time 
used in each of them is counted respectively. Run the three data, respectively, to get the time for the 
calculation of the three databases on Spark and MapReduce. The minimum support degree is 
min_sup=0.3. 

 
Figure 4. Comparison of running time between MapReduce and Spark  

As you can see in Figure 4, the same data is distinctly different on different computing 
frameworks. For small data, its running time is not very different. But with the increase of data, for 
MapReduce, it will increase the number of disk access and increase its I/O cost, so it will waste too 
much time. The calculation efficiency of the Spark framework is significantly lower than that of the 
traditional MapReduce framework. And with the growth of the data, the calculation efficiency is not 
a positive proportion, so it shows that the results will be better when the data is larger. 

4.2 Experiment B 
The purpose of the experiment is to prove the scalability of the optimization algorithm, and to 

verify the execution time of each database on different nodes by calculating the increase of nodes. 
Then compare three different groups of databases to verify the scalability of the algorithm. 

 
Figure 5. Comparison of operating efficiency under different number of nodes 
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As you can see from Figure 5, for the three sets of data sets, the algorithm runs down as the 
number of nodes increases. But from each set of data, the rate of decline of different datasets varies 
with the increase of nodes. With the increase of nodes, the efficiency of smaller data sets is not 
obvious. For larger data sets, the increase of their nodes will greatly reduce the running time. It 
shows that the optimization algorithm has better scalability and scalability on Spark. For the large 
data age, with the increase of data, the efficiency of the algorithm is obviously improved. 

5. Conclusions And Future Works 
In this paper, we study the traditional association rule algorithm, apply the traditional association 

rule Apriori algorithm to Spark, and optimize the data structure and parallel implementation of the 
algorithm. The experiment shows that the association rule algorithm based on Spark is more 
efficient than the traditional algorithm. In addition, the algorithm has good scalability and is suitable 
for a larger amount of data. But the data in the experiment did not reach a larger level of data. The 
purpose of this paper is to optimize the traditional association rules algorithm, which is suitable for 
the association rules of large data and processing data faster. In the follow-up study, a larger amount 
of data will be used to optimize the algorithm proposed in this paper. 
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